
NASA-CR-190 712

A dvanced Software

Development Workstation

Effectiveness of Constraint-Checking

Michel !zygon

Barrios Technology, Inc.

Julv 1. i992

(NASA-CR-190712) ADVANCED SOFT_ARE

DEVELOPMENT WORKSTATION:

EFFECTIVENESS OF

CONSTRAINT-CHECKING Interim Report

(Research Inst. for Computing and

Information Systems) 21 p

!
v

//y_ / r _ /C

//_ "/ 25 _7z

N92-32865

Uncl as

G3/61 0116934

t;ooperative Agreement NCC 9-16

Research Activity No. SR.02

NASA Johnson Space Center

information Systems Directorate

Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

INTERIM REPORT

The RICIS Concept

The University of H6uston-C!ear Lake established the Research Institute for

Computing and Information Systems (RICIS} in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research

in the computing and information sciences. As part of thls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated
program ofresear6hir_ advanced data processing technology needed forJSC's

rna_n nTdssions, including admlrflstraUve, englneering and science responsl-
bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginnlng in May 1986, to Jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the research=

The UHCL/RICIS missl0n is to conduct, coordinate, and disseminate rcseaxch
and professional level education in computing and information systems to

serve the needs Qf_e government, industry, community and academia.
RICIS combines re_ces of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

t/on, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collabo_tes with industry in a companion program. This program

Is focused on se@'g the research and advanced development needs of
industry.

Moreover, UHCL _-tablished relat/onshlps with other universities and re-
search organizattons_ having common research interests, to provide addi-

tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS re_g_h and education programs, while other research
organizations are involved via the "gateway" concepL

A major role of RIC!S then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-
tion sciences. RIC!S, worklngJointIy with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nleal and adminls_support to coordinate the research and integrates
technical results in_ the goals ofUHCL, NASA/JSC and industry.

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing and

Information Systems by Dr. Michel Izygon of Barrios Technology, Inc. Dr. Rodney L.
Bown served as the RICIS research coordinator.

Funding was provided by the Information Systems Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA research coordinator for this activity was

Ernest M. Fridge III, Deputy Chief of the Software Technology Branch, Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and should not

be interpreted as representative of the official policies, either express or implied, of

UHCL, RICIS, NASA or the United States Government.

Advanced Software Development Workstation

Effectiveness of Constraint-Checking
Interim Report

Prepared for
NASA-Johnson Space Center

July 1, 1992

Submitted by
Dr. Michel Izygon

Barrios Technology Inc.
1331 Gemini Av.

Houston, TEXAS 77058

ABSTRACT

This report summarizes the findings and lessons learned from the development of an
Intelligent User Interface for a space flight planning simulation program, in the specific ara
related to constraint-checking. The different functionalities of the Graphical User Interface
part and of the rule-based part of the system have been identified. Their respective domain
of applicability for error prevention and error checking have been specified.

Table of Contents

1. Introduction ... 1

2. Constraint-Checking: An Overview .. 1

2.1 Constraint-Checking Goals ... 1

2.2 Scope of constraint-checking .. 2

3. Constraint-Checking Mechanisms available in INTUIT 3

3.1 Rule Objects ... 3

3.2 Constraints and Argument Lists ... 3
3.3 Formulas ... 4

3.4 Predicates ... 5

4. Types of constraints checked by INTUIT .. 5

4.1. Phase Ordering .. 5

4.2 Complex Range Checking .. 7

4.2.1. Multiple Range .. 7

4.2.2. Range Dependency ... 7

4.2.3. Allowed Range, with warning if non default-
value .. 8

4.3 Interrelation of Parameters ... 9

4.3.1. Attributes encapsulated .. 9

4.3.2. Attributes not encapsulated .. 9

5 Types of constraints that cannot be checked .. 1 1

6 Constraint checking: Lessons learned .. 1 1
7 Conclusions .. 1 2

Appendix. Details of the INTUIT Rule System ... 1 3

Bibliography ... 1 6

1. Introduction

A good user interface is critical to the successful use of a complex scientific
application such as a space flight simulation, which typically involves very large sets of
input data. Even an expert user may expend substantial effort to introduce the right data in

the right manner. An Intelligent User Interface (IUI) uses knowledge-based technology to
provide the user with the capability to easily prepare the input data without requiring pnor
extensive knowledge of the underlying software. An IUI is also commonly called a
Knowledge-Based Front-End (KBFE). INTUIT (INTelligent User Interface development
Tool) is a generic IUI shell that a knowledge engineer configures for a specific application
by adding a knowledge base that includes input variable names which are immediately
understandable by the users, the range of permissible data values, the structure and format
of the data sets, and rules for error and consistency checking.

INTUIT has been used to develop an Intelligent Front-End (IFE) to a spaceflight

design program named GNDSIM, which is used to simulate the rendezvous part of a
shuttle mission. This report is aimed at summarizing the f'mdings and lessons learned from
the development of this IFE in the specific area related to constraints-checking. (Other
papers describing other facets of INTUIT are given in the biblography.)

2. Constraint-Checking : An Overview

The goal of an IUI is to support the end-user of an application by taking over the
tedious routine tasks, by providing assistance with the more complex tasks and by hiding

the complexities of the underlying application from the user. Some of these complex tasks
are related to the data integrity of the system. For example, in order to support the
GNDSIM end-user, the main area where an IFE is very helpful is in preventing and
checking user errors. In this section we will present what is involved in error checking.

2.1 Constraint-Checking Goals

Very often, in complex scientific applications, the end-user has to deal with a huge
amount of interrelated data. As a consequence, he spends a lot of his time preparing the
data and even more tracking his errors. An important feature of INTUIT is its constraints-
checking. It provides the end-user with an automatic error checking mechanism. The main

goal of the constraint-checking facility is to make sure that the user input are completely
error-free and consistent before he executes the program. The practical benefits of the
constraint-checking are •
• Increased productivity of the end-user who can spend his time working on his tasks rather
than debugging the input data.
• The CPU time is not lost on useless executions caused by corrupted data.
• The user needs less training time, as the complexity of his tasks has been lowered.

The INTUIT constraints-checking capabilities result from the integration of

Graphical User Interface (GUI) technology with Knowledge-Based technology. By mixing
them we can cover a large range of potential errors. In fact, there are many different ways
to ensure the integrity of the input data, depending on the type of error possible. We can
prevent a mistake either by presenting only the correct values that an input can take, or by
refusing a value if it is out of the allowable range. We can also accept a value but warn the
user of a potential problem. We see that many errors can be prevented purely by developing
a good user interface (UI). Characteristics of a good UI include good data organization and
a self-explanatory way of presenting information to the end-user, i.e., in a language that
talks to his domain expertise. When errors can not be prevented through the UI, then the
knowledge base technology can be useful. Therefore we must fast clearly understand what
types of errors a good UI can prevent and what kind of errors it cannot prevent.

2.2 Scope of constraint-checking

• What axe the different types of errors that are often found in these complex scientific
programs?

An application program is considered by the end-user as a tool to achieve his
domain specific goal. Very often this tool inherits some complexity from the domain it acts
on; i.e., the number of inputs with which the end-user must deal is a direct function of the
complexity of the domain and of the breadth of applicability of the tool.

We found in the literature many examples of complex programs that may be
classified as error-prone. They are used in different areas such as Computational
Chemistry, Ecological Modeling or Satellite Mission SuPlXa't. It is interesting to analyze the
reasons that make these programs error-prone for the end-user. The first possible reason is
the large number of data to input. It is not uncommon to find a few tens to a few hundreds
of inputs. It is impossible, for the end-user, to remember the meaning of each parameter, if
their names do not convey their meaning clearly.

Another factor that makes these programs error-prone is the great difficulty
associated with remembering the permissible values that a parameter can take, or its range if
it is an integer or a real. Moreover, the parameters may be interrelated; i.e., the value of one
parameter may affect the value of another parameter or its range, or its set of possible
values .These relationships are hard to track and therefore often cause the end-user to
overlook the implications that setting a parameter has on another parameter. These
interrelationships may be in various forms • if a parameter has a certain value, another
parameter has to be set, otherwise it does not have to be specified. Another type of
interrelationship is found when the value of one parameter needs to be entered in multiple
places within the input file.

• What errors can the GUI alone help to prevent?

Among the possible errors made by an end-user of a complex program, some can
be prevented simply through the use of a good user interface. For instance, some
presentation types such as radio buttons will not allow a wrong value to be input.

Consider an input parameter, for example a flag, that can take only a given number
of values. A GUI can present this information to the user with a radio button or a scroUable
list. Similarly, when the parameter has a given range of allowable values, a range checking
facility in a GUI can handle this situation and thus prevent an out-of-range value from
being input.

A GUI can also assume some part of the end-user's work such as tedious tasks or
propagating the value of a parameter to every place it needs to be input. It can also handle
hard formatting tasks.

Another standard feature of a GUI, On-line Help, can be very useful by simply
reminding the user of the meaning of some parameter or explaining to a novice user what
he is supposed to do at some point of his task.

• What errors cannot be prevented or checked by typical GUIs?
The more complex type of errors that we will describe now cannot be prevented or

detected by a typical GUI.
A parameter may have multiple valid ranges. For instance, it might take any value

between 0 and 25, and then between 50 and 100.
Interrelationship between variables is another type of error that cannot be handled

by a typical GUI.
As a final example, when a block of input data is to be entered with a rigorous

syntax, and cannot be simplified in order to remove the strict formatting, the GUI provides
no assistance for such a task.

2

3. Constraint-Checkin_ Mechanisms available in INTUIT

3.1 Rule Objects

In INTUIT, in order to ensure data integrity, as objects are created and modified,
there exist modification rules within the system which can propagate new attribute values or

check the validity of existing values. These rules are the source of INTUIT's complex
constraint-checking capabilities. The knowledge-based technology chosen to implement
them is ART-IM (Automated Reasoning Tool for Information Management) by Inference

Corp. Modification rules in the knowledge base are themselves represented as objects (or
schemas) and are transformed at initialization time into ART-IM rules. The def'mitions of
the object class rule and the instance compile_rule, as supplied in kernel.art are as follows:

(defschema rule
(is-a Object)
(compile compile_rule_method)
(name "Rule'))

(defschema compile_rule
(instance-of rule)
(text" (defrule compile_rule

(declare (salience -100))
(schema ?rule&- compile_rule
(Instance-of rule) (text ?))
_-->

(send compile ?rule))'))

At initialization of INTUIT, the ART-IM rule defined in the text slot of

compile_rule is compiled. This creates a production rule, itself called compile_rule, which
will cause the value of the text slot for each object which is an instance-of a rule to be

compiled. In this way, rules are generated which can modify other objects in the
knowledge base. More details about the INTUIT rule system are provided in the Appendix.

3.2 Constraints and Argument Lists

A subclass of the class rule is the class constraint. The def'mition of the constraint
class is as follows:

(defschema constraint
(is-a rule)
(attribute)
(constraint-of)
(name "Constraint"))

The class constraint in turn has subclasses formula and predicate. A formula is an
object used to specify how to compute the value of an attribute of a particular class of
objects in terms of other attributes of that object and its subobjects. (A subobject of a given

object is an object which is the value of an attribute of the given object.) For example, a
class of objects of type phase has attributes day, hour, mm, and sex:, whose values
represent the time since launch for the beginning of this phase of the mission. Phase also
has an attribute, tevent, whose value is also the time since launch for the beginning of this

phase of the mission, but tevent is expressed in seconds. Clearly tevent can be calculated
from the values of the day, hour, rain, and sec slots.

A predicate is used to specify how the system will verify relationships between the
values of attributes of an object and its subobjects. A function is specified whose

3

argumentsarc these values and which returns T if the relationship constraints are satisfied
and NIL if they are not. If the test fails, the object is marked as having a constraint
violation.

Any formula or predicate schema must specify a value for the constraint-of slot.
This value isthe name of theobjectclasstowhich theconstraintisintended to apply.The

computation specifiedby one of theseconstraintswillonly be invoked for objectswhich
areinstancesof the specifiedclass.

Formulas and predicatesrelyon user-specifiedfunctions,either(inthe case of a

formula) tocompute an attributevalue or (inthecase of a predicate)totestfor a constraint

violation.The knowledge engineer must specifyhow todetermine the arguments tothese

functions. This is done through the value of the arguments slot.This value must be a

sequence of n dements, where n isthenumber of arguments which willbe requiredby the

user-specifiedfunction.Each element in the sequence must be eithera symbol or a

sequence of symbols, each of which isan attributename.
The use of thisspecificationisperhaps bestillustratedby an example. Suppose a

constraintisintendedto apply toallobjectsinthe classrendezvous,and thatthisclasshas

attributespropagator-selectand omp-model-select. The values of these attributesare

intended to be instancesof propagation-selectionand omp-model schemas, each of which
will have a textattribute,whose values are intended to be used as arguments to the

constraintfunction.The followingcode fragment shows how thiswould be specified:

(constraint of rendezvous)
(arguments ((propagator-select text) (omp-model-select text)))

A constraint function will be applied to a specific object only if all arguments for

that function exist. In general, if the i-th element of the argument list is a symbol
representing a slot, then the i-th argument for the constraint function will be the value of
the slot in the object in question. If the i-th value of the argument list is a sequence of
symbols, al, a2 , then the argument is found by first taking the subobject which is the
value of the slot al, then taking the value of the slot a2 in that subobject, assuming it also
exists, etc. If the entire chain of subobjects exists, then the f'mal element in the chain is the
value passed to the constraint function. The number of arguments to a formula or predicate
function is limited to 40.

3.3 Formulas

A formula schema results in the creation of a rule which is used to compute a value

for some attribute of a particular object class. A formula schema is of the following form:

(defschema formula
(constraint of) ;classto which formula applies
(arguments)
(attribute) ;attributefor which value is computed
(function) ;name of function used to produce attribute value
(name) ;for document_ion

The value of the function slot of a formula instance is a symbol representing the name of a

user-supplied function. This is normally a def-art-fun, but could be a clef-user-fun or an
ART-IM system function.

In order for a formula to be applied, there must be an object in the knowledge base
which is an instance of the class given by the value of the constraint_of slot. The values of
attributes of this object and its subobjects as specified by the value of the arguments slot
must exist. These values are then passed as arguments to the function specified in the

4

function slot. The return value from this function is then used to modify the value of the
object attribute specified by the value of the attribute slot.

3.4 Predicates

A predicate schema results in the generation of a rule which is used to perform a
procedural test on an object. If the test fails, the object is marked as having a constraint
violation. This is done by asserting the name of the function as a value in the
violates_constraint slot of the object.

A predicate schema is of the following form:

(defschema predicate
(constrainto0
(arguments)
(boolean-function)
(name)

;class to which predicate applies

;name of function to be used for test
,'fordocumentation

As with a formula, the value of the boolean-function slot of a predicate instance is a
symbol representing the name of a user-supplied function. This is normally a def-art-fun,
but could be a def-user-fun or an ART-IM system function.

4. Types of constraints checked bv INTUIT

In this section we will present the different types of errors that can be checked with
theINTUIT constraints-checkingcapabilities.Some ofthesearedLrecdyderivedfrom the
GNDSIM experience.

Many problems faced by the end-user were caused by the difficulty to remember the
meaning, the allowable values, the range and the type of the different parameters. Applying
pure GUI techniques allowed us to solve these problems. What we are interested in
analyzing in this section are the remaining types of errors, which we could not solve with a
GUI alone.

4.1. Phase Ordering
In GNDSIM, the user has to enter a list of phases corresponding to each shuttle

trajectory modification. One of the problems faced by the end-user is that the phases must
be ordered according to their phase number. Moreover, in some phases the time at which
the event occurs has to be def'med, and generally this time value has to be greater than the
time value of any preceding phase. Therefore we have two separate constraints that must be
satisfied. The first one, phase ordering according to phase number, is a hard constraint, i.e.
it must be enforced. The second one, phase ordering according to the time of the event is a
soft constraint; i.e., it should be checked and reported to the end-user but not enforced by
the system (It is possible, but rare for GNDSIM to propagate backward in time). In order
to implement these two constraints we used two different approaches. For the fast one, we
used a mechanism available in INTUIT that automates the phase ordering according to
phase number, thereby preventing this error. The mechanism used is called multi-valued
slot ordering. When a multi-valued slot is specified for an object, there is the option of
specifying a function which will be used to order the values in this slot for display and in
formula functions. As shown below, this ordering function helps to order the multiple
values (in this case, phase objects) found in the slot PHASE_ of the object RENDEZVOUS
according to the value of the slot PHASNUM that is found in each of the phase objects
listed in PHASE_. Thus, the mis-ordering of phases is not possible any more. Specifically,
phase_-ordering-function compares the values of the phasnum slots of two phase objects,
and INTUIT then uses the results of all these pairwise comparisons to correctly order the
phase objects listed in PHASE_.

5

(def-art-fun phase_-ordering-function (?sl ?s2)
(bind .'Nalidl (and (syrn_lp ?sl) (schemap ?sl) (slotp ?sl phasnum)))
(bind ?valid2(and (symbolp?s2) (schemap ?s2) (slotp ?s2 phasnum)))
(bind ?tl (if ?valid1 then (get-schema-value ?sl phasnum) else NIL))
(bind ?12(if ?valid2 then (get-schema-value ?s2 phasnum) else NIL))
(if (not?tl) then

(if?t2 then-1 else 0)
else (if (not .o12)then 1

else (if (< _1 712)then -1
else (if (eq _1 ?t2) then0

ere _)))))

For the second constraint conce_g ordering the phases according to time, we
used a regular formula mechanism described in section 3.3. A warning message is
displayed that the user has to acknowledge. The user may still misorder the phases
according to the time slot, which is desirable in the case of a soft constraint. The formula
mechanism currently only handles soft constraints. It allows a warning to be issued but
does not enforce hard constraints; i.e., it does not force the user to resolve a real error.
Other mechanisms must be used to enforce hard constraints. The formula schema and the

associated function for this phase time constraint are shown below:
(defschema formula_order_phase

(instarce-of formula)
(arguments(name))
(attr110uteviolates_constraint)
(constraint_of rendezvous)
(function check-phase-time-order))

(def-art-fun check-phase-time-order(?name)
(bind ?rdv (read-from-string?name))
(bind ?phases (get-schema-value ?rdv PHASE_))
(bind ?ordered-phases

(reorder-values ?phases phase_-ordering-function))
(b.d ?knt1)
(bind?vioiconNIL)
(bind ?kntmax (lengthS ?ordered-phases))
(for ?p inS?ordered-phases do

(if (= ?knt?kntmax)then
(Und.'tt_ (- .'_-_1)))

(if (/= (get-schema-value ?p covarmat) NO_PERTURBATION) then
(bind?tl (get-schema-value?p tevent))
(for?k2from(+ .'_ 1)to .':4_naxdo

(if (and (/= (get-schema-value(nth$?ordensd.pi_ses ?k2) covarmat) NO_PERTURBATION)
(> ?tl (get-schema-value(nthS?ordered-phases.Ok,?.)tevent))) then

(t_d ."_,ioloonorder___;-bad)
(bind ?t2 (get-schema-value (nth$?ordered-phases ?k2) tevent))
(bind ?p2 (nth$?ordered-phases ?k2))

(bind ?rnsg(sprintf"_nWARNING: inconsistencyinobject %a _Itevent, %a, _in phase
%a _nis greater than tevent, %a, _nin the phase %a" ?rdv ?tl ?p ?t2 .Ol32))

(add-warning-item?rdvorder-of_irt_is-bad USER NIL _ NIL)
(pdnlfNIL "%a" ?msg)

)

(bind ?knt (+ ?knt 1))
else O:_d ?knt(+ .?knl1))

)
)
."_olcon)

6

The apparent complexity of the function is caused by the fact that all the phases do
not have a time of event that is meaningful. The function has to check for the phases where

the value represents a meaningful time of event, and to apply the check accordingly.
It should be mentioned here that the way ordering is handled by the system is not

completely satisfactory. The problem arises from the fact that the ordering varameter has to
be an attribute of the phase object schemas. This has the following implication: whenever
the end-user wants to change the order of a given phase object, and assuming that this

schema is a saved object, the end-user will have to edit this phase object, to modify the
value of the ordering parameter, then to create a new object by modifying the phase object
name, and finally to change the pointer in the PHASE_ slots so that it points to this new

phase object. When this type of task needs to be often performed, the end-user will rapidly
find the number of steps involved to be a real burden for him. Other solutions should be
researched in order to offer an easier way of ordering a set of objects.

4.2 Complex Range Checking
It can happen that a parameter has a more complex valid range than just from value

A to value B. It can, for example, have a multiple (i.e., disconnected) valid range such as 0
to 10 and 20 to 50. Another possibility is that the range of the parameter depends on the
value of another parameter. A third and slightly different situation exists in GNDSIM,
where a set of parameters can take any value within a single (i.e., connected) valid range,
but the user has to be warned if one of the values is different from its default value. These

three types of range checking can be easily implemented with the available INTUIT
mechanisms. We will now describe how this can be achieved.

4.2.1. Multiple Range.
The multiple range can be resolved using the Predicate mechanism in_oduced in

section 3.4. The associated function checks the value of the specified parameter against the

allowed ranges. If the parameter is out of range, the Predicate returns a constraint-violation
value for the object, thus prompting a warning message to be displayed. Here is an
example of such a multiple range check predicate, that applies to the attribute "attribute_l"
of the class "obj_a', and for which the valid range is [liminfl,limaxl]or[limint2,1imax2].

(defschema multi-range_predicate
(instance-of predicate)
(constraint_of obj_a)
(arguments attribute_l)
(boolean_function check-multi-range))

The associated function is :

(def-art-fun check-multi-range (?arg)
(if (or (and (> ?arg limintl) (< ?arg Urnaxl)) (and (> ?arg Uminf2) (< ?arg Umax2)) then T else NIL))

The range values 0iminfl, limaxl,liminf2 and limax2) can be entered direcdy in the
function, or input as attributes of the object, and passed as arguments to the predicate
function.

4.2.2. Range Dependency.
This situation represents the case when the valid range of an attribute is modified

according to the value of another attribute. For example, the range of attribute A is from
liminfl to limaxl when the attribute B has a value ofnl and from liminf2 to limax2, when

B is equal to n2. In order to implement such a range check, we can use either a Formula or
a Predicate. In both cases we assume that the attributes A and B belong to the same object.

7

If these attributes belong to different objects, the constraints-checking would be
implemented as explained in section 4.3.2 on Interrelationship of parameters. The way to
solve this problem is very close to the previous example, but a slightly different function is
associated with the predicate.

(defschema range-dependent_predicate
(instance-of predicate)
(constraint_of obj_a)
(arguments attr_A attr_B)
(boolean. function check-depend-range))

The associated function is :

(def-art-fun check-depend-range (?A ?B)
(if (or (and (and (> ?A Uminfl)(< ?A limaxl)) (= ?B nl))

(and (and (> ?A liminf2)(< ?A limax2)) (= ?B n2))
then T else NIL))

When the condition on these attribute values is violated, the predicate returns a NIL
and then INTUIT sets the value for the attribute "constraint-violation" of the object "obj_a",

thus prompting a warning message to be displayed.

4.2.3. Allowed Range, with warning if non default-value.
The third of these complex range checking capabilities is aimed at informing the

end-user that an attribute has a correct value but is not equal to its specified default value.

This type of check is solved via a different feature of INTUIT. It is possible to def'me a
default value for each parameter and also a default and a non-default color for any panel. If
one of the parameters included in such a panel is assigned a value different from its default
value, the panel color is changed to its non-default color, thereby indicating to the end-user
that a parameter has a different value from its default value. The schemas involved in this

type of constraint-checking are as follows:

(defschema montecarlo_initialization
(is-a application_component)
(has-form-specificationform-for-mcinit)

Oran1)
(mtcp_)
(nranl)
(rvef2)
(nsam3o)
(name "montecado Initialization"))

(defschema panel-for-mc_init
(instance-of panel-spec)
(has-item-specs jran-spec rntcp-spec nran-specs nref-specs nsam-specs)
(paneHd)
(default-background-color "white")
(non-default-background-color "red'))

We can see that in the definition of the class montecarlo_initialization, the attributes

jran, mtcp, man, nref and nsam are initialized at their default values. If any of these
parameters takes a value different from the defined default value, the corresponding panel
will change from its default color, white, to its defined non default color, red. This allows
the user to be aware of the change without displaying a warning message that the user
would have to acknowledge.

8

4.3 Interrelation of Parameters.

One of the main areas where GUI techniques cannot ensure data integrity is where
the input parameters are interrelated, i.e., the value of one parameter is dependent on the
values of other parameters. This is a known mason for many errors, as the end-user has to

make sure that the parameter values axe consistent. The mechanisms provided by INTUIT,
described in section 3, allow to eliminate this source of errors. Two different cases can
occur. The fast one occurs when the attribute that is being calculated and the attributes it

depends on are encapsulated within the same object. The second case occurs when the
attributes cannot be encapsulated in the same object.

4.3.1. Atu'ibutes encapsulated
The way to implement this type of constraint is to employ the formula mechanism

as explained in section 3.3. The arguments of the formula are the parameters on which the
calculation is based, and the attribute of the formula object is the parameter being derived.

The formula is attached to the object containing all the attributes. As an example, consider
an object "phase" that contains an attribute tevent that is derived from the values of the
attributes day, hour, min and see belonging to the same class:

(defschema phase
(is-a application_component)
(ph_number)
(ph_title)
(icoast)
(covar_mat)
(day)
(hour)
(min)
(soc)
(tevent)
(name "Phase'))

The following is a formula designed to compute the value of the slot tevent, given values
for the day, hour, min, and see slots:

(defschema phase-formula
(instance-of formula)
(arguments(day hour min see))
(attribute tevent)
(constraint-of phase)
(function caic-sec))

(clef-art-funcalc-sec (?day ?hr ?min ?sec)
(+ (+ (+ (* (* ?day 24) 3600) (* ?hr 3600)) (* ?rain60)) ?sec))

4.3.2. Attributes not encapsulated
If the parameters cannot be encapsulated in the same object, the solution is trickier

to build. Basically, in order to apply one of the available mechanisms, there needs to be
some way to relate all the objects containing all these attributes. This is done through the
object architecture; i.e., there must be an object whose attribute values point to all of the
objects containing these attributes. This type of problem oecured in the GNDSIM
knowledge base. In order to convert the times of the phases from Mission Elapsed Time
(MET), into Greanwich Mean Time (GMT), there needs to be an object which can access
both the phase time and the launch time. As these parameters are attributes belonging to the
classes Phase and Simulation_definition, respectively, we had to attach the required

9

Formula to the Rendezvous class which has two attributes that point to objects belonging to
thePhase and Simulation_definitionclasses:

(defschema rendezvous
(is-a applicationname)
(first_phase_init)

(simulation_def) ; this attribute points to the class Simulation_definition

(phase_)
(text)

; this attribute points to the class Phase

(defschema Simulation_definition
(is-a application_component)
(day)
(hour)
(rain)
(sec)

(btime)) ; this is the launch time in seconds after midnight

(defschema Phase
(is-a applicationcomponent)
(day)
(hour)
(n_n)
(see)
(phasnum)
(phastit)
(tevent)) ; this is the time of the phase in MET

The INTUIT system does not allow the attributetcvcntof classPhase todetermine

any informationabout the value of the attributebtim¢ of the classSimulation_definition.

ThereforeitisintheclassRendezvous thatthesetwo parameterswillbe merged inorderto

calculatetcvcntinGMT. The resultisplacedinthetcxtlattributeof theclassRendezvous.
The Formula thatdoes thiscalculationisthereforeattachedtoRendezvous. Itisas follows:

(defschema rendezvous-formula
(instance-of formula)
(arguments ((simulation_def) (phase_)))
(attribute text1)
(constraint-of rendezvous)
(function calc-gmt))

(def-art-fun calc-gmt(?simdef .'?phases)
(bind ?stream (open-string NIL _f'))
(bind ?simtime (get-schema-value ?sirndef blime))
(bind ?ordered-phases (reorder-values ?phases phase_-ordedng-function))
(t_nd ?knt 1)
(for ?p inS ?ordered-phases do

(bind ?tevent (get-schema-value ?p tevent))
(bind ?gmtime (+ ?tevent ?simtime))
(pdntf ?stream "%a_n%a"(get-schema-value ?p text) ?gmtima)
(bind?knt (+ _nt 1)))

(bind ?stdng (get-stream-string ?stream))
(close ?stream)
?string)

lO

5 Tvt_es of constraints that cannot be checked

During the development of the G_SIM knowledge base, we came across a type
of error that could not be prevented through good GUI techniques, nor checked by the rule-

based system. This type of error involves a parameter that must be entered through a
multiline free-format editor. This parameter is a sequence of events which represents the
ordered list of burns that is required to accomplish a given rendezvous. This parameter has

the following typical format:

Sequence Definition
DO EXDV AT 1"= 12345.5, DVLV = 0.0, 0.0, -0.5
DO EXDV AT DT= 2., DVLV = 1.0, 0.0, 0.0
DO NC AT M= 2.0
DO NSR AT M= 9., DR = -40.0
DO NC AT Dr= 20.0, LITM = -2.0
DO NH AT W'I'= 180.0
DO EXDV AT W3"= 315.0, DVLV - 0.0, 0.0, 0.0
DO TPI ATWT= 225.0, DR - -8.0, DH- -0.2
DO TPF AT W'I',= 320.0,

We notice that it has a strict syntax and a number of reserved words. In order to
make sure that the input sequence is correct, we would need to look for any typographical
error in any of the reserved words used, and also to check for the syntactic correctness of
each line. Moreover, some engineering rules could also be applied to check that the input
plan is correct; e.g., if a given type of burn is performed, what should the next maneuver
be and how much time should separate the two events?

The INTUIT system cannot currently check for this type of error because the ART-
IM language does not have any input/output function that can be used to parse a line into
words or characters. This is the only way we could have checked for possible

typographical errors or syntax errors. In order to solve this problem, one could write a C
function that would parse the sequence of events. The question that arises is how generic
can this function be in order to be used for a broader type of syntax checking?

It should be pointed out that we did not search specifically for errors that cannot be
checked, and therefore we cannot provide an exhaustive list of these. There are probably
more types of errors that IN'II.IIT cannot prevent nor check, and the best way to find them
is to develop new applications.

6 Constraint checkin_ : Lessons learned.

Let us now summarize the lessons learned regarding constraint-checking from the
first INTUIT knowledge base development.

The application chosen, GNDSIM, was probably a good choice for developing the
first knowledge base: we learned about the process and about the capabilities of INTUIT,
as well as about the constraint-checking mechanisms. Nevertheless, GNDSIM was
probably too simple an application in terms of errors to be prevented or to be checked
because most of the problems faced by the end-users could be solved simply by using GUI
technology. In order to use the rule-based system of INTUIT at its full potential, a more
complex type of application is needed, one in which the dependencies between the variables
are more numerous and more complex. Applying this technology to a more difficult system
is certainly the next step we need to take, in order to thoroughly test its power and its
eventual shortcomings. This might also help us address the performance issue, when the
number of constraints to be checked is over one hundred.

11

One of the advantages of INTUIT is that the target system is completely modeled
with objects. This provided a lot of flexibility for developing the constraints and for
extending them, as our understanding of GNDSIM's end-user errors improved.

Introducing the constraints in the knowledge base using the available mechanisms
proved to be simple enough. However, it should be noted that one of INTU1T's declared
advantages, which is the possibility of easily entering everything as objects so that the
knowledge engineer need not know the ART-IM language, proved partially erroneous. In
fact, entering the rules as objects does not isolate the knowledge engineer from ART-IM, it
just moves the problem one step into the background, because the formulas' or predicates'
associated functions have to be written using ART-IM. Therefore, the internal complexity
added to INTUIT in order to translate the rule objects into actual rules at compile time, is
questionable. Writing the rules directly would probably have significantly, simpLified the
INTUIT system without adding too much complexity to the knowledge engmeer's tasks.

One of the questions that we still need to answer is whether or not the available
mechanisms can be adapted to any type of constraints. We have found that some errors
cannot be checked, using formulas or predicates. For instance, the syntax of free-format
text cannot be parsed. The eventual solution to such a problem is to write a new C function
that will allow us to retrieve the text and to check both its spelling and its syntax. How
difficult this task may be and how difficult it is to integrate the new function with the
available constraint-checking mechanisms is still to be assessed.

7 Conclusions

INTUIT, the INTelligent User Interface development Tool, has been used to
develop an intelligent front-end (WE) to a complex space flight simulation program. The
errors that can be prevented or reported, and the constraint-checking capabilities of the
system have been analyzed. The different functionalities of the GUI part and of the rule-
based part of the system have been identified. By combining these two technologies, we
proved that it is possible to significantly help the end-user of a complex program in the
preparation of the input data. Introducing into the system the rules that check for the errors
or the constraints appeared to be relatively easy, even though it required a fairly good
knowledge of the ART-IM language. We also found out during this first IFE development,
that there is a class of errors (free-format text entry) that the system cannot currently detect.
The next phases of our research in this dom_ should include the following s.tep,s:
• Develop an IFE for a target application in which the constraint-cnecging is more
numerous and more complex to implement than those developed for GNDSIM. We need to
find new types of constraints and assess how INTUIT can handle them.
• Develop an WE (perhaps the same application mentioned above) with a high number of
constraints (above one hundred), in order to assess the performance of the system.
• In parallel, more effort should be devoted to evaluating the capabilities of a different type
of GUI, such as GPIP, in order to precisely evaluate the added value provided by a rule-
based system over a regular GUI system that has been enhanced with some IF-THEN type
of logical constructs.
• Assess ways of automating the input of the functions associated with the formula and
predicate objects, as part of a general effort to study how to ease the knowledge engineer's
work.
• Finally, possibilities of deriving an intelligent assistant from the current system should be
investigated. This would help the end-user by providing him a way to ask the system about
pre- and post-constraints associated with a given parameter.

12

Appendix. Details of the INTUIT Rule System.

The INTUIT Rule System, allows the constraint-checking to be input through simple
schemas, that the system transforms into rules. The process of this transformation is explained
here. It follows a five steps process shown on Figure 1.

1 In access.c, inthe main program, during the initializationthere is the following instruction:
a_send(a_art_symbol('compile'),a_a__syrnbol('compile_rule'),NULL)

This C function,a_send, executes the ART function which is pointed to by the attribute
"compile" of the object =compile_rule', The schema "compile_rule', shown below, has an
attribute "compile" inherited from its parent class "rule', which value is "compile_rule_method'.

(defschema rule
(is-a Object)
(compile compile_rule_method)
(name "Rule'))

(defschema compile_rule
(instance-of rule)
(text" (defrule compile_rule

(declare (salience -100))
(schema ?rule&~compile_rule
(Instance-of rule) (text ?))
==>,

(send compile ?rule))"
))

In the file artfuns.art there are user defined functions (def-user-fun) that act as pointers to
C functions. In particular, there is a def-user-fun compile_rule_method that points to a C function
called also compile_rule_method which is in the file accessfns.c. The a_send statement calls this
function and passes the schema name ('compile_rule') as an argument.

The C function compile_rule_method extracts the value of the text slot from the schema
"compilerule'. The value of this slit, "defrule compile_rule...." is a rule that is put in the active
knowledge base.
2 Once in the knowledge base this rule is fidng on each schema that is an instance-of rule.
For each of these schemas, this rule sends a compile message (the right-hand side of the rule is
:send compile ?rule) which means that the function compile_rule_method is executed on each of
them. So, for example, the schema generate_class_restriction_rule, which is an instance of rule,
is compiled into a rule that is the value of Its text attribute: defrule generate_class_restrictiln_rule.

(defschema generate_class_restriction_rule
(linstance-of rule))
(compile compile_rule_method)
(text "(defmle generate_class_restriction_rule_\t

(ilgical_n\t(schema ?attribute-restdction_\t_t
(instance-of artribute-restriction)\n\t\t
(alilwabie-classes $?x &: (> (lengthS ?x) O))_n_t_t
(attribute ?attribute)))_\t_n\t
(test (not (instance-of-p ?attribute-restriction mandatory-attn'bute-restriction)))
=>\n\t
(bind ?rule-name (sprintf _\t_tV'%a-VIOLATION-RUL_" ?attribute-restriction))\n\t
(bind ?violation-name (spdntf _\t\t\'%a-VIOLATION\" ?attfibute-restriction))\n\t
(bind ?string (sprintf \n_t\t_"
(defrule %s \n_t(Iogical (schema ?s \nUt(instance-of object)_n_t_t(%a.Oval)))

=>_t(if (not-instance-of-aliowable-class .Oval%a)
then\n_t(assert (schema ?s _t\t(violates_constraint =/_)))_n_t\t(add-waming-item ?s %a

%a %a .OvalALLOWABLE-CLASSES)))
\" \n\t\t?rule-name _n_t_t?attribute \n\t\t?attribute-restrictiln _\t\t?violation-name
\n\t_t?violation-name \n\t\t?attribute-restdction _\t_t?attdbute))\n_t
(bind ?temp
(read-from-string \n_t_t(sprintf \'_/_-GEN-RUL_" ?attribute-restriction)))\n\t
(assert (schema_emp\n_t\t(instance-of generated-rule)\n\t\t(TEXT ?stdng))))")

(VIOLATES_CONSTRAINT))

]3

3 Once in the knowledge base, this rule fires for each schema which is an instance-of
attribute-restriction. It generates a schema, instance-of generated_rule, which includes the
attribute compile that has the value compile_rule_method. For example, the slit "vehicle_init" is
being restricted to the class =vehicle_initialization'. This is the way, the knowledge engineer input
this restriction:

(defschema vehicle_init-restriction
(instance-of attribute-restriction)
(allowable-classes vehicle_initialization))
(attribute vehicle_initialization))

This schema being an =instance-of attribute-restriction', the rule =generate_class-
restriction-rule" fires and creates out of it, the following schema:

(defschema vehicle_init-rest dction-gen-rule
(instance-of generated-rule object rule)
(compile compile_rule_method)
(TEXT "(defrule VEHICLE_INIT-RESTRICTI_-VIOLATION-RULE _n_t(Iogical (schema ?s

_\t\t(instance-of object)_t_t(VEHICLE_INIT _al)))=>_t(if (not-instance-of-alliwable-class ?val
VEHICLE_INIT-RESTRICTION) then_n\t(assert (schema ?s \n_t_t(vlilates_constraint
VEHICLE_INIT-RESTRICTION-VIOLATION)))_t_t(add--warning-item ?s VEHICLE_INIT-
RESTRICTION-VIOLATION VEHICLE_INIT-RESTRICTION VEHICLE_INIT .?valALLOWABLE-
CLASSES)))')

(VIOLATES_CONSTRAINT))

4 As this schema is an =instance-of rule" which "compile" attribute has a value of =compile-
rule-method', it is then compiled using the same procedure specified above. Its text attr_ute is
compiled into a defrule named attribute-restriction-violation-rule:

(defrule VEHICLE_INIT-RESTRICTION-VIOLATION-R ULE
(_ai

(schema?s
(instance-ofobject)

(VEHICLEJNrr.'_a_))
==>

(IF
(NOT-INSTANCE-OF-ALLOWABLE-CLASS ?VAL VEHICLE_INIT-RESTRICTION) THEN
(ASSERT

(SCHEMA
(VIOLATES_CONSTRAINT VEHICLE iNIT-RESTRICTION-VIOLATION)))

(ADD-WARNING-ITEM ?S VEHICLE_INIT--'RESTRICTION-VIOLATION VEHICLE_.INIT-
RESTRICTION VEHICLE_INIT ?VAL ALLOWABLE-CLASSES)))

5 Finally this rule fires whenever violation occurs on the restricted attribute, thus modifying
the value of the constraint-violation attribute of the corresponding object.

14

U.S,Gov't
ART-IM SCHEMA TO RULE
GENERATION FLOW FOR:

- CLASS_RESTRICTION_RULE
- MANDATORY_CLASS-RESTRICTION_RULE
- ENUMERATED_SETRULE
-MANDATORY ENUMERATED SET RULE
-TYPE RESTRI-CTION RULE - -
-MANI)ATORY TYPE]rESTRICTION RULE

The following actions occur for each of the rules listed
above:

1) at start up, main routine(access.c) builds the compile_rule
rule from the compile_rule schema.
2) compilerule rule generates restriction roles
for all instances of rule exist in the knowledge base. A
compile__mle_method C routine is called to generate a new
Rile.

3) each attribute restriction rules query for attribute restriction
instances and builds a generate rule schema for the instance.
4) compile_rule rule generates attribute restriction violation
rule from each of the generate rule schemas.
5) step 2 is repeated
6) each attribute restriction violation rules query for their des-
ignated attributes from instances of object containing that
attribute; every time the designated attribute changes,
the specific attribute restriction violation rule checks for
attribute restriction violation; the violation is recorded in the

violates_constraint slot of the object and the warning is
posted.

LEGENDS:

input action

-----2..:::::-:.:.:£.::.:.::.:.:_:_:_.._.._..________

Bibliography

M. E. lzygon, C. L. Pitman, "INTUIT - An INTelligent User Interface
Development Tool", Proceedings of the Ninth TAE User Conference, New-
Carollton, Md, November 5-7, 1991.

M. E. Izygon, C. L. Pitman, "Applying Expert System Technology to

Existing Simulation Programs", International Conference on Simulation
Technology, SIMTEC 91, Orlando, Florida, October 21-23, 1991.

M. E. Izygon, C. L. Pitman, "A Knowledge Based Front-End for a Complex
Spaceflight Simulation Program", Proceedings of the 1991 Summer Computer
Simulation Conference, Baltimore, Md, July 22-24, 1991

C. L. Pitman, M. E. Izygon, E. W. Ralston, E. M. FridgeIII, and B. P. Allen,
"Intelligent Interfaces for Complex Software", Proceedings of the 4th
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, HawaY June 2-5 1991.

16

